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* Left: Comparison between fundus and OCTA w.r.t. AMD stages. All AMD stages
o exhibit drusens in fudus while OCTA displays pathological vessels in different retina
projection layers directly. It is still an ongoing challenge to tell active stage from remission.
°* Top: Interrelationships among OCT and OCTA raw volume, B-scans, and OCTA
projection. OCT B-Scan layer segmentation influences OCTA projection generation.

Contribution

Layer Segmentation Error

v' We experimentally verified that the OCTA projections, which ophthalmologists usually || >Error Population

use for diagnosis, are easily affected by layer segmentation errors. Those errors degrade sample type Active Remission Dry  Normal | Total

the classification performance. #wl seg. error | 138 91 57 7 788
v We propose to use 3D raw OCTA volume to avoid the impacts of those errors. To # w/o seg. error | 52 39 90 61 242

achieve this, we modify a pretrained 2D network to perform volume classification. We also error percentage | 72.6% 70% 388% 32% | 54.3%

adopt an additional projection supervision to facilitate training of shallow feature extractor.
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v’ Experimental results show that the proposed classifier can achieve the accuracy of more visud nsctln Accuracy

than 80%, regardless of the presence of layer segmentation errors. These results prove
the effectiveness of our methods and suggest that OCTA is a promising modality to || .
distinguish various stages of AMD disease.

Train on Teston | Accuracy
Cleanset Cleanset | 69.64%
Clean set Mixedset | 53.57%
Mixed set Cleanset | 64.29%
Mixed set Mixedset | 57.14%

Methods

* R1,2: Hard to generalize

(a) 2D OCTA Projection Input from clean to mixed
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> Classifier structure: One additional convolution layer to convert input channels; Adjusted the R1,2,4: Possible to learn
output of the last FC to match the number of categories. the joint distribution
. . o I
> Warmup strategy: first freeze all the blue layers and train only the red ones for 600 epochs; LA s b SR R3,4 Samples with errors
Then finetune all the layers together for another 900 epochs with a smaller learning rate. incorrect vascular network - missing vessels noise are hard to learn.
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Experimental Results

Data Preparation: Confusion Matrices:

®* The dataset consists of 697 raw OCTA volumes with projections: active 182, remission 187, dry 188 and normal 140. 6 3 4 1 2 [ 4 0 2.0

® Error-free subset only has samples with no layer segmentation errors; Error-prone subset contains numerous samples with errors.
Results:

15.0

rem 125

Setting Error-free Error-prone Setting Error-free Error-prone f ] 2 o ., . s o (]I,
2D Input 3D Input :
MM PT | Accuracy AUC | Accuracy AUC PT PS | Accuracy AUC | Accuracy AUC o 2 . N
Thakoor | X X | 5536 08159 | 57 08176 e noap | XX 75 0.9489 69 ossal L. I I
et.al. [30] | v/ X | 625 08512| 66  0.8428 ¥ dl;} ¥ X 01 0'9238 o 0'9009 && 8 &8 8
OurS(ZD) X X 7321 0.8565 62 0.8065 ed.Net [ ] ] . ; Human on Error-free test Human on Error-prone test
X / 80.36 0.9264 72 0.8697 Ours(3D) \/ X 82 14 0.9524 74 09055 act 2 0 0 . act
Homan | - - | 5392 _ 60 _ vV V| 8393  0.9298 80 0.912
* MM: Multimodal information (including OCT B-scan, OCT and OCTA projections), PT: Pretraining. PS: Projection Supervision. § 6 g
I I i n n S 4 a1
Discussion: Confusion Matrices:
® [30] vs Ours(2D): EfficientNet backbone and Imagenet pretrained model helps. * Human struggled to oA | [© vomy
* Human vs Ours(2D): Proving the potential of OCTA as a diagnostic modality for AMD. distinguish remission - & & &
from aCtive; Ours-3D on Error-free test Ours-3D on Error-prone test

® Ours(2D) vs Ours(3D), Error-free vs Error-prone: Directly analyzing 3D raw data benefits
¢ 3D Conv vs Ours(3D): Well-designed 2D CNN is better than 3D when training data is limited.
® Ours(3D): Our proposed projection supervision is helpful.

®* Layer segmentation error degrades accuracy on Dry;
® Ours-3D performs well and resist layer segmentation error better.




